Gemini - Google AI Studio
| Eigenschaft | Details |
|---|---|
| Beschreibung | Google AI Studio ist eine vollständig verwaltete KI-Entwicklungsplattform zum Erstellen und Verwenden generativer KI. |
| Provider-Routing in LiteLLM | gemini/ |
| Provider-Dokumentation | Google AI Studio ↗ |
| API-Endpunkt für Anbieter | https://generativelanguage.googleapis.com |
| Unterstützte OpenAI-Endpunkte | /chat/completions, /embeddings, /completions |
| Durchleitungs-Endpunkt | Unterstützt |
API-Schlüssel​
import os
os.environ["GEMINI_API_KEY"] = "your-api-key"
Beispielverwendung​
from litellm import completion
import os
os.environ['GEMINI_API_KEY'] = ""
response = completion(
model="gemini/gemini-pro",
messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}]
)
Unterstützte OpenAI-Parameter​
- temperature
- top_p
- max_tokens
- max_completion_tokens
- stream
- tools
- tool_choice
- functions
- response_format
- n
- stop
- logprobs
- frequency_penalty
- modalities
- reasoning_content
Anthropic-Parameter
- thinking (wird verwendet, um das maximale Budget-Token für Anthropic/Gemini-Modelle festzulegen)
Verwendung - Thinking / reasoning_content​
LiteLLM übersetzt reasoning_effort von OpenAI in den Parameter thinking von Gemini. Code
Mapping
| reasoning_effort | Denken |
|---|---|
| "low" | "budget_tokens": 1024 |
| "medium" | "budget_tokens": 2048 |
| "high" | "budget_tokens": 4096 |
- SDK
- PROXY
from litellm import completion
resp = completion(
model="gemini/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="low",
)
- Konfigurieren Sie config.yaml
- model_name: gemini-2.5-flash
litellm_params:
model: gemini/gemini-2.5-flash-preview-04-17
api_key: os.environ/GEMINI_API_KEY
- Proxy starten
litellm --config /path/to/config.yaml
- Testen Sie es!
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer <YOUR-LITELLM-KEY>" \
-d '{
"model": "gemini-2.5-flash",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"reasoning_effort": "low"
}'
Erwartete Antwort
ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
),
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)
thinking an Gemini-Modelle übergeben​
Sie können den Parameter thinking auch an Gemini-Modelle übergeben.
Dies wird in den Parameter thinkingConfig von Gemini übersetzt. thinkingConfig
- SDK
- PROXY
response = litellm.completion(
model="gemini/gemini-2.5-flash-preview-04-17",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)
curl http://0.0.0.0:4000/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer $LITELLM_KEY" \
-d '{
"model": "gemini/gemini-2.5-flash-preview-04-17",
"messages": [{"role": "user", "content": "What is the capital of France?"}],
"thinking": {"type": "enabled", "budget_tokens": 1024}
}'
Gemini-spezifische Parameter übergeben​
Antwortschema​
LiteLLM unterstützt das Senden von response_schema als Parameter für Gemini-1.5-Pro auf Google AI Studio.
Antwortschema
- SDK
- PROXY
from litellm import completion
import json
import os
os.environ['GEMINI_API_KEY'] = ""
messages = [
{
"role": "user",
"content": "List 5 popular cookie recipes."
}
]
response_schema = {
"type": "array",
"items": {
"type": "object",
"properties": {
"recipe_name": {
"type": "string",
},
},
"required": ["recipe_name"],
},
}
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={"type": "json_object", "response_schema": response_schema} # 👈 KEY CHANGE
)
print(json.loads(completion.choices[0].message.content))
- Modell zur config.yaml hinzufügen
model_list:
- model_name: gemini-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Proxy starten
$ litellm --config /path/to/config.yaml
- Anfrage stellen!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
],
"response_format": {"type": "json_object", "response_schema": {
"type": "array",
"items": {
"type": "object",
"properties": {
"recipe_name": {
"type": "string",
},
},
"required": ["recipe_name"],
},
}}
}
'
Schema validieren
Um das response_schema zu validieren, setzen Sie enforce_validation: true.
- SDK
- PROXY
from litellm import completion, JSONSchemaValidationError
try:
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={
"type": "json_object",
"response_schema": response_schema,
"enforce_validation": true # 👈 KEY CHANGE
}
)
except JSONSchemaValidationError as e:
print("Raw Response: {}".format(e.raw_response))
raise e
- Modell zur config.yaml hinzufügen
model_list:
- model_name: gemini-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Proxy starten
$ litellm --config /path/to/config.yaml
- Anfrage stellen!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
],
"response_format": {"type": "json_object", "response_schema": {
"type": "array",
"items": {
"type": "object",
"properties": {
"recipe_name": {
"type": "string",
},
},
"required": ["recipe_name"],
},
},
"enforce_validation": true
}
}
'
LiteLLM validiert die Antwort anhand des Schemas und löst eine JSONSchemaValidationError aus, wenn die Antwort nicht mit dem Schema übereinstimmt.
JSONSchemaValidationError erbt von openai.APIError
Greifen Sie mit e.raw_response auf die Rohantwort zu
GenerationConfig-Parameter​
Um zusätzliche GenerationConfig-Parameter zu übergeben, z. B. topK, übergeben Sie sie einfach im Anfragekörper des Aufrufs, und LiteLLM leitet sie als Schlüssel-Wert-Paar im Anfragekörper weiter.
Gemini GenerationConfigParams anzeigen
- SDK
- PROXY
from litellm import completion
import json
import os
os.environ['GEMINI_API_KEY'] = ""
messages = [
{
"role": "user",
"content": "List 5 popular cookie recipes."
}
]
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
topK=1 # 👈 KEY CHANGE
)
print(json.loads(completion.choices[0].message.content))
- Modell zur config.yaml hinzufügen
model_list:
- model_name: gemini-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Proxy starten
$ litellm --config /path/to/config.yaml
- Anfrage stellen!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
],
"topK": 1 # 👈 KEY CHANGE
}
'
Schema validieren
Um das response_schema zu validieren, setzen Sie enforce_validation: true.
- SDK
- PROXY
from litellm import completion, JSONSchemaValidationError
try:
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={
"type": "json_object",
"response_schema": response_schema,
"enforce_validation": true # 👈 KEY CHANGE
}
)
except JSONSchemaValidationError as e:
print("Raw Response: {}".format(e.raw_response))
raise e
- Modell zur config.yaml hinzufügen
model_list:
- model_name: gemini-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Proxy starten
$ litellm --config /path/to/config.yaml
- Anfrage stellen!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
],
"response_format": {"type": "json_object", "response_schema": {
"type": "array",
"items": {
"type": "object",
"properties": {
"recipe_name": {
"type": "string",
},
},
"required": ["recipe_name"],
},
},
"enforce_validation": true
}
}
'
Sicherheitseinstellungen angeben​
In bestimmten Anwendungsfällen müssen Sie möglicherweise Aufrufe an die Modelle tätigen und Sicherheitseinstellungen übergeben, die von den Standardeinstellungen abweichen. Übergeben Sie dazu einfach das Argument safety_settings an completion oder acompletion. Zum Beispiel
response = completion(
model="gemini/gemini-pro",
messages=[{"role": "user", "content": "write code for saying hi from LiteLLM"}],
safety_settings=[
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE",
},
]
)
Tool-Aufrufe​
from litellm import completion
import os
# set env
os.environ["GEMINI_API_KEY"] = ".."
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]
response = completion(
model="gemini/gemini-1.5-flash",
messages=messages,
tools=tools,
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
Google Search Tool​
- SDK
- PROXY
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
- Konfigurieren Sie config.yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
- Proxy starten
$ litellm --config /path/to/config.yaml
- Anfrage stellen!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"googleSearch": {}}]
}
'
Google Search Retrieval​
- SDK
- PROXY
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"googleSearch": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
- Konfigurieren Sie config.yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
- Proxy starten
$ litellm --config /path/to/config.yaml
- Anfrage stellen!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"googleSearch": {}}]
}
'
Code Execution Tool​
- SDK
- PROXY
from litellm import completion
import os
os.environ["GEMINI_API_KEY"] = ".."
tools = [{"codeExecution": {}}] # 👈 ADD GOOGLE SEARCH
response = completion(
model="gemini/gemini-2.0-flash",
messages=[{"role": "user", "content": "What is the weather in San Francisco?"}],
tools=tools,
)
print(response)
- Konfigurieren Sie config.yaml
model_list:
- model_name: gemini-2.0-flash
litellm_params:
model: gemini/gemini-2.0-flash
api_key: os.environ/GEMINI_API_KEY
- Proxy starten
$ litellm --config /path/to/config.yaml
- Anfrage stellen!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash",
"messages": [{"role": "user", "content": "What is the weather in San Francisco?"}],
"tools": [{"codeExecution": {}}]
}
'
JSON-Modus​
- SDK
- PROXY
from litellm import completion
import json
import os
os.environ['GEMINI_API_KEY'] = ""
messages = [
{
"role": "user",
"content": "List 5 popular cookie recipes."
}
]
completion(
model="gemini/gemini-1.5-pro",
messages=messages,
response_format={"type": "json_object"} # 👈 KEY CHANGE
)
print(json.loads(completion.choices[0].message.content))
- Modell zur config.yaml hinzufügen
model_list:
- model_name: gemini-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Proxy starten
$ litellm --config /path/to/config.yaml
- Anfrage stellen!
curl -X POST 'http://0.0.0.0:4000/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-pro",
"messages": [
{"role": "user", "content": "List 5 popular cookie recipes."}
],
"response_format": {"type": "json_object"}
}
'
Beispielnutzung​
import os
import litellm
from dotenv import load_dotenv
# Load the environment variables from .env file
load_dotenv()
os.environ["GEMINI_API_KEY"] = os.getenv('GEMINI_API_KEY')
prompt = 'Describe the image in a few sentences.'
# Note: You can pass here the URL or Path of image directly.
image_url = 'https://storage.googleapis.com/github-repo/img/gemini/intro/landmark3.jpg'
# Create the messages payload according to the documentation
messages = [
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
},
{
"type": "image_url",
"image_url": {"url": image_url}
}
]
}
]
# Make the API call to Gemini model
response = litellm.completion(
model="gemini/gemini-pro-vision",
messages=messages,
)
# Extract the response content
content = response.get('choices', [{}])[0].get('message', {}).get('content')
# Print the result
print(content)
Verwendung - PDF / Videos / etc. Dateien​
Inline-Daten (z.B. Audio-Stream)​
LiteLLM folgt dem OpenAI-Format und akzeptiert die Übergabe von Inline-Daten als Base64-kodierte Zeichenkette.
Das zu befolgende Format ist
data:<mime_type>;base64,<encoded_data>
LITELLM AUFRUF
import litellm
from pathlib import Path
import base64
import os
os.environ["GEMINI_API_KEY"] = ""
litellm.set_verbose = True # 👈 See Raw call
audio_bytes = Path("speech_vertex.mp3").read_bytes()
encoded_data = base64.b64encode(audio_bytes).decode("utf-8")
print("Audio Bytes = {}".format(audio_bytes))
model = "gemini/gemini-1.5-flash"
response = litellm.completion(
model=model,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Please summarize the audio."},
{
"type": "file",
"file": {
"file_data": "data:audio/mp3;base64,{}".format(encoded_data), # 👈 SET MIME_TYPE + DATA
}
},
],
}
],
)
Entsprechender GOOGLE API AUFRUF
# Initialize a Gemini model appropriate for your use case.
model = genai.GenerativeModel('models/gemini-1.5-flash')
# Create the prompt.
prompt = "Please summarize the audio."
# Load the samplesmall.mp3 file into a Python Blob object containing the audio
# file's bytes and then pass the prompt and the audio to Gemini.
response = model.generate_content([
prompt,
{
"mime_type": "audio/mp3",
"data": pathlib.Path('samplesmall.mp3').read_bytes()
}
])
# Output Gemini's response to the prompt and the inline audio.
print(response.text)
https:// Datei​
import litellm
import os
os.environ["GEMINI_API_KEY"] = ""
litellm.set_verbose = True # 👈 See Raw call
model = "gemini/gemini-1.5-flash"
response = litellm.completion(
model=model,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Please summarize the file."},
{
"type": "file",
"file": {
"file_id": "https://storage...", # 👈 SET THE IMG URL
"format": "application/pdf" # OPTIONAL
}
},
],
}
],
)
gs:// Datei​
import litellm
import os
os.environ["GEMINI_API_KEY"] = ""
litellm.set_verbose = True # 👈 See Raw call
model = "gemini/gemini-1.5-flash"
response = litellm.completion(
model=model,
messages=[
{
"role": "user",
"content": [
{"type": "text", "text": "Please summarize the file."},
{
"type": "file",
"file": {
"file_id": "gs://storage...", # 👈 SET THE IMG URL
"format": "application/pdf" # OPTIONAL
}
},
],
}
],
)
Chat-Modelle​
Wir unterstützen ALLE Gemini-Modelle. Setzen Sie einfach model=gemini/<any-model-on-gemini> als Präfix, wenn Sie LiteLLM-Anfragen senden.
| Modellname | Funktionsaufruf | Erforderliche OS-Variablen |
|---|---|---|
| gemini-pro | completion(model='gemini/gemini-pro', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-1.5-pro-latest | completion(model='gemini/gemini-1.5-pro-latest', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-2.0-flash | completion(model='gemini/gemini-2.0-flash', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-2.0-flash-exp | completion(model='gemini/gemini-2.0-flash-exp', messages) | os.environ['GEMINI_API_KEY'] |
| gemini-2.0-flash-lite-preview-02-05 | completion(model='gemini/gemini-2.0-flash-lite-preview-02-05', messages) | os.environ['GEMINI_API_KEY'] |
Kontext-Caching​
Die Verwendung des Kontext-Cachings von Google AI Studio wird unterstützt von
{
{
"role": "system",
"content": ...,
"cache_control": {"type": "ephemeral"} # 👈 KEY CHANGE
},
...
}
in Ihrem Nachrichten-Inhaltsblock.
Architekturdiagramm​
Notizen
Gemini Context Caching erlaubt nur 1 Block zusammenhängender Nachrichten, die zwischengespeichert werden können.
Wenn mehrere nicht zusammenhängende Blöcke
cache_controlenthalten, wird der erste zusammenhängende Block verwendet. (gesendet an/cachedContentim Gemini-Format)
- Die Rohanfrage an den Endpunkt
/generateContentvon Gemini sieht wie folgt aus
curl -X POST "https://generativelanguage.googleapis.com/v1beta/models/gemini-1.5-flash-001:generateContent?key=$GOOGLE_API_KEY" \
-H 'Content-Type: application/json' \
-d '{
"contents": [
{
"parts":[{
"text": "Please summarize this transcript"
}],
"role": "user"
},
],
"cachedContent": "'$CACHE_NAME'"
}'
Beispielverwendung​
- SDK
- PROXY
from litellm import completion
for _ in range(2):
resp = completion(
model="gemini/gemini-1.5-pro",
messages=[
# System Message
{
"role": "system",
"content": [
{
"type": "text",
"text": "Here is the full text of a complex legal agreement" * 4000,
"cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
}
],
},
# marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
}
],
}]
)
print(resp.usage) # 👈 2nd usage block will be less, since cached tokens used
- Konfigurieren Sie config.yaml
model_list:
- model_name: gemini-1.5-pro
litellm_params:
model: gemini/gemini-1.5-pro
api_key: os.environ/GEMINI_API_KEY
- Proxy starten
litellm --config /path/to/config.yaml
- Testen Sie es!
Beispiele für Langchain, OpenAI JS, Llamaindex usw. anzeigen
- Curl
- OpenAI Python SDK
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--data '{
"model": "gemini-1.5-pro",
"messages": [
# System Message
{
"role": "system",
"content": [
{
"type": "text",
"text": "Here is the full text of a complex legal agreement" * 4000,
"cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
}
],
},
# marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
}
],
}],
}'
import openai
client = openai.AsyncOpenAI(
api_key="anything", # litellm proxy api key
base_url="http://0.0.0.0:4000" # litellm proxy base url
)
response = await client.chat.completions.create(
model="gemini-1.5-pro",
messages=[
{
"role": "system",
"content": [
{
"type": "text",
"text": "Here is the full text of a complex legal agreement" * 4000,
"cache_control": {"type": "ephemeral"}, # 👈 KEY CHANGE
}
],
},
{
"role": "user",
"content": "what are the key terms and conditions in this agreement?",
},
]
)
Bilderzeugung​
- SDK
- PROXY
from litellm import completion
response = completion(
model="gemini/gemini-2.0-flash-exp-image-generation",
messages=[{"role": "user", "content": "Generate an image of a cat"}],
modalities=["image", "text"],
)
assert response.choices[0].message.content is not None # ".."
- Konfigurieren Sie config.yaml
model_list:
- model_name: gemini-2.0-flash-exp-image-generation
litellm_params:
model: gemini/gemini-2.0-flash-exp-image-generation
api_key: os.environ/GEMINI_API_KEY
- Proxy starten
litellm --config /path/to/config.yaml
- Testen Sie es!
curl -L -X POST 'https://:4000/v1/chat/completions' \
-H 'Content-Type: application/json' \
-H 'Authorization: Bearer sk-1234' \
-d '{
"model": "gemini-2.0-flash-exp-image-generation",
"messages": [{"role": "user", "content": "Generate an image of a cat"}],
"modalities": ["image", "text"]
}'