Zum Hauptinhalt springen

Databricks

LiteLLM unterstützt alle Modelle auf Databricks

Tipp

Wir unterstützen ALLE Databricks-Modelle. Setzen Sie einfach model=databricks/<any-model-on-databricks> als Präfix, wenn Sie LiteLLM-Anfragen senden.

Verwendung

UMGEBUNGSVARIABLE

import os 
os.environ["DATABRICKS_API_KEY"] = ""
os.environ["DATABRICKS_API_BASE"] = ""

Beispielaufruf

from litellm import completion
import os
## set ENV variables
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url" # e.g.: https://adb-3064715882934586.6.azuredatabricks.net/serving-endpoints

# Databricks dbrx-instruct call
response = completion(
model="databricks/databricks-dbrx-instruct",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)

Übergabe zusätzlicher Parameter - max_tokens, temperature

Alle von litellm.completion unterstützten Parameter finden Sie hier

# !pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks api base"

# databricks dbrx call
response = completion(
model="databricks/databricks-dbrx-instruct",
messages = [{ "content": "Hello, how are you?","role": "user"}],
max_tokens=20,
temperature=0.5
)

Proxy

  model_list:
- model_name: llama-3
litellm_params:
model: databricks/databricks-meta-llama-3-70b-instruct
api_key: os.environ/DATABRICKS_API_KEY
max_tokens: 20
temperature: 0.5

Verwendung - Thinking / reasoning_content

LiteLLM übersetzt den Parameter reasoning_effort von OpenAI in den Parameter thinking von Anthropic. Code

reasoning_effortDenken
"low""budget_tokens": 1024
"medium""budget_tokens": 2048
"high""budget_tokens": 4096

Bekannte Einschränkungen

  • Unterstützung für die Rückgabe von Denkblöcken an Claude Issue
from litellm import completion
import os

# set ENV variables (can also be passed in to .completion() - e.g. `api_base`, `api_key`)
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url"

resp = completion(
model="databricks/databricks-claude-3-7-sonnet",
messages=[{"role": "user", "content": "What is the capital of France?"}],
reasoning_effort="low",
)

Erwartete Antwort

ModelResponse(
id='chatcmpl-c542d76d-f675-4e87-8e5f-05855f5d0f5e',
created=1740470510,
model='claude-3-7-sonnet-20250219',
object='chat.completion',
system_fingerprint=None,
choices=[
Choices(
finish_reason='stop',
index=0,
message=Message(
content="The capital of France is Paris.",
role='assistant',
tool_calls=None,
function_call=None,
provider_specific_fields={
'citations': None,
'thinking_blocks': [
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6...'
}
]
}
),
thinking_blocks=[
{
'type': 'thinking',
'thinking': 'The capital of France is Paris. This is a very straightforward factual question.',
'signature': 'EuYBCkQYAiJAy6AGB...'
}
],
reasoning_content='The capital of France is Paris. This is a very straightforward factual question.'
)
],
usage=Usage(
completion_tokens=68,
prompt_tokens=42,
total_tokens=110,
completion_tokens_details=None,
prompt_tokens_details=PromptTokensDetailsWrapper(
audio_tokens=None,
cached_tokens=0,
text_tokens=None,
image_tokens=None
),
cache_creation_input_tokens=0,
cache_read_input_tokens=0
)
)

Übergib thinking an Anthropic-Modelle

Sie können den thinking-Parameter auch an Anthropic-Modelle übergeben.

Sie können den thinking-Parameter auch an Anthropic-Modelle übergeben.

from litellm import completion
import os

# set ENV variables (can also be passed in to .completion() - e.g. `api_base`, `api_key`)
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks base url"

response = litellm.completion(
model="databricks/databricks-claude-3-7-sonnet",
messages=[{"role": "user", "content": "What is the capital of France?"}],
thinking={"type": "enabled", "budget_tokens": 1024},
)

Unterstützte Databricks Chat Completion Modelle

Tipp

Wir unterstützen ALLE Databricks-Modelle. Setzen Sie einfach model=databricks/<any-model-on-databricks> als Präfix, wenn Sie LiteLLM-Anfragen senden.

ModellnameBefehl
databricks/databricks-claude-3-7-sonnetcompletion(model='databricks/databricks-claude-3-7-sonnet', messages=messages)
databricks-meta-llama-3-1-70b-instructcompletion(model='databricks/databricks-meta-llama-3-1-70b-instruct', messages=messages)
databricks-meta-llama-3-1-405b-instructcompletion(model='databricks/databricks-meta-llama-3-1-405b-instruct', messages=messages)
databricks-dbrx-instructcompletion(model='databricks/databricks-dbrx-instruct', messages=messages)
databricks-meta-llama-3-70b-instructcompletion(model='databricks/databricks-meta-llama-3-70b-instruct', messages=messages)
databricks-llama-2-70b-chatcompletion(model='databricks/databricks-llama-2-70b-chat', messages=messages)
databricks-mixtral-8x7b-instructcompletion(model='databricks/databricks-mixtral-8x7b-instruct', messages=messages)
databricks-mpt-30b-instructcompletion(model='databricks/databricks-mpt-30b-instruct', messages=messages)
databricks-mpt-7b-instructcompletion(model='databricks/databricks-mpt-7b-instruct', messages=messages)

Embedding Modelle

Übergabe von Databricks-spezifischen Parametern - 'instruction'

Für Embedding-Modelle können Sie mit Databricks einen zusätzlichen Parameter 'instruction' übergeben. Vollständige Spezifikation

# !pip install litellm
from litellm import embedding
import os
## set ENV variables
os.environ["DATABRICKS_API_KEY"] = "databricks key"
os.environ["DATABRICKS_API_BASE"] = "databricks url"

# Databricks bge-large-en call
response = litellm.embedding(
model="databricks/databricks-bge-large-en",
input=["good morning from litellm"],
instruction="Represent this sentence for searching relevant passages:",
)

Proxy

  model_list:
- model_name: bge-large
litellm_params:
model: databricks/databricks-bge-large-en
api_key: os.environ/DATABRICKS_API_KEY
api_base: os.environ/DATABRICKS_API_BASE
instruction: "Represent this sentence for searching relevant passages:"

Unterstützte Databricks Embedding Modelle

Tipp

Wir unterstützen ALLE Databricks-Modelle. Setzen Sie einfach model=databricks/<any-model-on-databricks> als Präfix, wenn Sie LiteLLM-Anfragen senden.

ModellnameBefehl
databricks-bge-large-enembedding(model='databricks/databricks-bge-large-en', messages=messages)
databricks-gte-large-enembedding(model='databricks/databricks-gte-large-en', messages=messages)