Zum Hauptinhalt springen

Azure AI Studio

LiteLLM unterstützt alle Modelle auf Azure AI Studio

Verwendung

UMGEBUNGSVARIABLE

import os 
os.environ["AZURE_AI_API_KEY"] = ""
os.environ["AZURE_AI_API_BASE"] = ""

Beispielaufruf

from litellm import completion
import os
## set ENV variables
os.environ["AZURE_AI_API_KEY"] = "azure ai key"
os.environ["AZURE_AI_API_BASE"] = "azure ai base url" # e.g.: https://Mistral-large-dfgfj-serverless.eastus2.inference.ai.azure.com/

# predibase llama-3 call
response = completion(
model="azure_ai/command-r-plus",
messages = [{ "content": "Hello, how are you?","role": "user"}]
)

Übergabe zusätzlicher Parameter - max_tokens, temperature

Alle von litellm.completion unterstützten Parameter finden Sie hier

# !pip install litellm
from litellm import completion
import os
## set ENV variables
os.environ["AZURE_AI_API_KEY"] = "azure ai api key"
os.environ["AZURE_AI_API_BASE"] = "azure ai api base"

# command r plus call
response = completion(
model="azure_ai/command-r-plus",
messages = [{ "content": "Hello, how are you?","role": "user"}],
max_tokens=20,
temperature=0.5
)

Proxy

  model_list:
- model_name: command-r-plus
litellm_params:
model: azure_ai/command-r-plus
api_key: os.environ/AZURE_AI_API_KEY
api_base: os.environ/AZURE_AI_API_BASE
max_tokens: 20
temperature: 0.5
  1. Starten Sie den Proxy

    $ litellm --config /path/to/config.yaml
  2. Anfrage an LiteLLM Proxy Server senden

    import openai
    client = openai.OpenAI(
    api_key="sk-1234", # pass litellm proxy key, if you're using virtual keys
    base_url="http://0.0.0.0:4000" # litellm-proxy-base url
    )

    response = client.chat.completions.create(
    model="mistral",
    messages = [
    {
    "role": "user",
    "content": "what llm are you"
    }
    ],
    )

    print(response)

Funktionsaufrufe

from litellm import completion

# set env
os.environ["AZURE_AI_API_KEY"] = "your-api-key"
os.environ["AZURE_AI_API_BASE"] = "your-api-base"

tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
messages = [{"role": "user", "content": "What's the weather like in Boston today?"}]

response = completion(
model="azure_ai/mistral-large-latest",
messages=messages,
tools=tools,
tool_choice="auto",
)
# Add any assertions, here to check response args
print(response)
assert isinstance(response.choices[0].message.tool_calls[0].function.name, str)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)

Unterstützte Modelle

LiteLLM unterstützt ALLE Azure AI Modelle. Hier sind einige Beispiele

ModellnameFunktionsaufruf
Cohere command-r-pluscompletion(model="azure_ai/command-r-plus", messages)
Cohere command-rcompletion(model="azure_ai/command-r", messages)
mistral-large-latestcompletion(model="azure_ai/mistral-large-latest", messages)
AI21-Jamba-Instructcompletion(model="azure_ai/ai21-jamba-instruct", messages)

Rerank Endpunkt

Verwendung

from litellm import rerank
import os

os.environ["AZURE_AI_API_KEY"] = "sk-.."
os.environ["AZURE_AI_API_BASE"] = "https://.."

query = "What is the capital of the United States?"
documents = [
"Carson City is the capital city of the American state of Nevada.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean. Its capital is Saipan.",
"Washington, D.C. is the capital of the United States.",
"Capital punishment has existed in the United States since before it was a country.",
]

response = rerank(
model="azure_ai/rerank-english-v3.0",
query=query,
documents=documents,
top_n=3,
)
print(response)