Literal AI - Protokollieren, Auswerten, Überwachen
Literal AI ist eine kollaborative Plattform für Beobachtung, Bewertung und Analytik zum Erstellen von LLM-Apps für den Produktionseinsatz.
Voraussetzungen
Stellen Sie sicher, dass Sie das Paket literalai installiert haben.
pip install literalai litellm
Schnellstart
import litellm
import os
os.environ["LITERAL_API_KEY"] = ""
os.environ['OPENAI_API_KEY']= ""
os.environ['LITERAL_BATCH_SIZE'] = "1" # You won't see logs appear until the batch is full and sent
litellm.success_callback = ["literalai"] # Log Input/Output to LiteralAI
litellm.failure_callback = ["literalai"] # Log Errors to LiteralAI
# openai call
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": "Hi 👋 - i'm openai"}
]
)
Mehrstufige Traces
Diese Integration ist mit den Decorators des Literal AI SDK kompatibel und ermöglicht die Nachverfolgung von Konversationen und Agenten.
import litellm
from literalai import LiteralClient
import os
os.environ["LITERAL_API_KEY"] = ""
os.environ['OPENAI_API_KEY']= ""
os.environ['LITERAL_BATCH_SIZE'] = "1" # You won't see logs appear until the batch is full and sent
litellm.input_callback = ["literalai"] # Support other Literal AI decorators and prompt templates
litellm.success_callback = ["literalai"] # Log Input/Output to LiteralAI
litellm.failure_callback = ["literalai"] # Log Errors to LiteralAI
literalai_client = LiteralClient()
@literalai_client.run
def my_agent(question: str):
# agent logic here
response = litellm.completion(
model="gpt-3.5-turbo",
messages=[
{"role": "user", "content": question}
],
metadata={"literalai_parent_id": literalai_client.get_current_step().id}
)
return response
my_agent("Hello world")
# Waiting to send all logs before exiting, not needed in a production server
literalai_client.flush()
Erfahren Sie mehr über die Protokollierungsfunktionen von Literal AI.
Binden Sie eine Generierung an ihre Prompt-Vorlage
Diese Integration funktioniert sofort mit auf Literal AI verwalteten Prompts. Das bedeutet, dass eine bestimmte LLM-Generierung an ihre Vorlage gebunden wird.
Erfahren Sie mehr über Prompt-Management auf Literal AI.
Verwendung des OpenAI-Proxys
Wenn Sie den Lite LLM-Proxy verwenden, können Sie die Literal AI OpenAI-Instrumentierung verwenden, um Ihre Aufrufe zu protokollieren.
from literalai import LiteralClient
from openai import OpenAI
client = OpenAI(
api_key="anything", # litellm proxy virtual key
base_url="http://0.0.0.0:4000" # litellm proxy base_url
)
literalai_client = LiteralClient(api_key="")
# Instrument the OpenAI client
literalai_client.instrument_openai()
settings = {
"model": "gpt-3.5-turbo", # model you want to send litellm proxy
"temperature": 0,
# ... more settings
}
response = client.chat.completions.create(
messages=[
{
"content": "You are a helpful bot, you always reply in Spanish",
"role": "system"
},
{
"content": message.content,
"role": "user"
}
],
**settings
)