Google ADK mit LiteLLM
Verwenden Sie Google ADK mit dem LiteLLM Python SDK, LiteLLM Proxy
Dieses Tutorial zeigt Ihnen, wie Sie intelligente Agenten mit dem Agent Development Kit (ADK) erstellen, das UnterstĂĽtzung fĂĽr mehrere Anbieter von Large Language Models (LLM) mit LiteLLM bietet.
Übersicht​
ADK (Agent Development Kit) ermöglicht es Ihnen, intelligente Agenten zu erstellen, die von LLMs angetrieben werden. Durch die Integration mit LiteLLM können Sie
- Mehrere LLM-Anbieter nutzen (OpenAI, Anthropic, Google usw.)
- Einfach zwischen Modellen verschiedener Anbieter wechseln
- Mit einem LiteLLM-Proxy fĂĽr zentralisiertes Modellmanagement verbinden
Voraussetzungen​
- Python-Umgebung eingerichtet
- API-SchlĂĽssel fĂĽr Modell-Anbieter (OpenAI, Anthropic, Google AI Studio)
- Grundlegendes Verständnis von LLMs und Agentenkonzepten
Installation​
pip install google-adk litellm
1. Umgebung einrichten​
Importieren Sie zunächst die notwendigen Bibliotheken und richten Sie Ihre API-Schlüssel ein
import os
import asyncio
from google.adk.agents import Agent
from google.adk.models.lite_llm import LiteLlm # For multi-model support
from google.adk.sessions import InMemorySessionService
from google.adk.runners import Runner
from google.genai import types
import litellm # Import for proxy configuration
# Set your API keys
os.environ["GOOGLE_API_KEY"] = "your-google-api-key" # For Gemini models
os.environ["OPENAI_API_KEY"] = "your-openai-api-key" # For OpenAI models
os.environ["ANTHROPIC_API_KEY"] = "your-anthropic-api-key" # For Claude models
# Define model constants for cleaner code
MODEL_GEMINI_PRO = "gemini-1.5-pro"
MODEL_GPT_4O = "openai/gpt-4o"
MODEL_CLAUDE_SONNET = "anthropic/claude-3-sonnet-20240229"
2. Ein einfaches Tool definieren​
Erstellen Sie ein Tool, das Ihr Agent verwenden kann
def get_weather(city: str) -> dict:
"""Retrieves the current weather report for a specified city.
Args:
city (str): The name of the city (e.g., "New York", "London", "Tokyo").
Returns:
dict: A dictionary containing the weather information.
Includes a 'status' key ('success' or 'error').
If 'success', includes a 'report' key with weather details.
If 'error', includes an 'error_message' key.
"""
print(f"Tool: get_weather called for city: {city}")
# Mock weather data
mock_weather_db = {
"newyork": {"status": "success", "report": "The weather in New York is sunny with a temperature of 25°C."},
"london": {"status": "success", "report": "It's cloudy in London with a temperature of 15°C."},
"tokyo": {"status": "success", "report": "Tokyo is experiencing light rain and a temperature of 18°C."},
}
city_normalized = city.lower().replace(" ", "")
if city_normalized in mock_weather_db:
return mock_weather_db[city_normalized]
else:
return {"status": "error", "error_message": f"Sorry, I don't have weather information for '{city}'."}
3. Hilfsfunktion für die Agenteninteraktion​
Erstellen Sie eine Hilfsfunktion, um die Agenteninteraktion zu erleichtern
async def call_agent_async(query: str, runner, user_id, session_id):
"""Sends a query to the agent and prints the final response."""
print(f"\n>>> User Query: {query}")
# Prepare the user's message in ADK format
content = types.Content(role='user', parts=[types.Part(text=query)])
final_response_text = "Agent did not produce a final response."
# Execute the agent and find the final response
async for event in runner.run_async(
user_id=user_id,
session_id=session_id,
new_message=content
):
if event.is_final_response():
if event.content and event.content.parts:
final_response_text = event.content.parts[0].text
break
print(f"<<< Agent Response: {final_response_text}")
4. Verschiedene Modell-Anbieter mit ADK verwenden​
4.1 OpenAI-Modelle verwenden​
# Create an agent powered by OpenAI's GPT model
weather_agent_gpt = Agent(
name="weather_agent_gpt",
model=LiteLlm(model=MODEL_GPT_4O), # Use OpenAI's GPT model
description="Provides weather information using OpenAI's GPT.",
instruction="You are a helpful weather assistant powered by GPT-4o. "
"Use the 'get_weather' tool for city weather requests. "
"Present information clearly.",
tools=[get_weather],
)
# Set up session and runner
session_service_gpt = InMemorySessionService()
session_gpt = session_service_gpt.create_session(
app_name="weather_app",
user_id="user_1",
session_id="session_gpt"
)
runner_gpt = Runner(
agent=weather_agent_gpt,
app_name="weather_app",
session_service=session_service_gpt
)
# Test the GPT agent
async def test_gpt_agent():
print("\n--- Testing GPT Agent ---")
await call_agent_async(
"What's the weather in London?",
runner=runner_gpt,
user_id="user_1",
session_id="session_gpt"
)
# Execute the conversation with the GPT agent
await test_gpt_agent()
# Or if running as a standard Python script:
# if __name__ == "__main__":
# asyncio.run(test_gpt_agent())
4.2 Anthropic-Modelle verwenden​
# Create an agent powered by Anthropic's Claude model
weather_agent_claude = Agent(
name="weather_agent_claude",
model=LiteLlm(model=MODEL_CLAUDE_SONNET), # Use Anthropic's Claude model
description="Provides weather information using Anthropic's Claude.",
instruction="You are a helpful weather assistant powered by Claude Sonnet. "
"Use the 'get_weather' tool for city weather requests. "
"Present information clearly.",
tools=[get_weather],
)
# Set up session and runner
session_service_claude = InMemorySessionService()
session_claude = session_service_claude.create_session(
app_name="weather_app",
user_id="user_1",
session_id="session_claude"
)
runner_claude = Runner(
agent=weather_agent_claude,
app_name="weather_app",
session_service=session_service_claude
)
# Test the Claude agent
async def test_claude_agent():
print("\n--- Testing Claude Agent ---")
await call_agent_async(
"What's the weather in Tokyo?",
runner=runner_claude,
user_id="user_1",
session_id="session_claude"
)
# Execute the conversation with the Claude agent
await test_claude_agent()
# Or if running as a standard Python script:
# if __name__ == "__main__":
# asyncio.run(test_claude_agent())
4.3 Googles Gemini-Modelle verwenden​
# Create an agent powered by Google's Gemini model
weather_agent_gemini = Agent(
name="weather_agent_gemini",
model=MODEL_GEMINI_PRO, # Use Gemini model directly (no LiteLlm wrapper needed)
description="Provides weather information using Google's Gemini.",
instruction="You are a helpful weather assistant powered by Gemini Pro. "
"Use the 'get_weather' tool for city weather requests. "
"Present information clearly.",
tools=[get_weather],
)
# Set up session and runner
session_service_gemini = InMemorySessionService()
session_gemini = session_service_gemini.create_session(
app_name="weather_app",
user_id="user_1",
session_id="session_gemini"
)
runner_gemini = Runner(
agent=weather_agent_gemini,
app_name="weather_app",
session_service=session_service_gemini
)
# Test the Gemini agent
async def test_gemini_agent():
print("\n--- Testing Gemini Agent ---")
await call_agent_async(
"What's the weather in New York?",
runner=runner_gemini,
user_id="user_1",
session_id="session_gemini"
)
# Execute the conversation with the Gemini agent
await test_gemini_agent()
# Or if running as a standard Python script:
# if __name__ == "__main__":
# asyncio.run(test_gemini_agent())
5. LiteLLM Proxy mit ADK verwenden​
LiteLLM Proxy bietet einen einheitlichen API-Endpunkt fĂĽr mehrere Modelle, was die Bereitstellung und zentrale Verwaltung vereinfacht.
Erforderliche Einstellungen fĂĽr die Verwendung von LiteLLM Proxy
| Variable | Beschreibung |
|---|---|
LITELLM_PROXY_API_KEY | Der API-SchlĂĽssel fĂĽr den LiteLLM Proxy |
LITELLM_PROXY_API_BASE | Die Basis-URL fĂĽr den LiteLLM Proxy |
USE_LITELLM_PROXY oder litellm.use_litellm_proxy | Wenn auf True gesetzt, wird Ihre Anfrage an den LiteLLM Proxy gesendet. |
# Set your LiteLLM Proxy credentials as environment variables
os.environ["LITELLM_PROXY_API_KEY"] = "your-litellm-proxy-api-key"
os.environ["LITELLM_PROXY_API_BASE"] = "your-litellm-proxy-url" # e.g., "https://:4000"
# Enable the use_litellm_proxy flag
litellm.use_litellm_proxy = True
# Create a proxy-enabled agent (using environment variables)
weather_agent_proxy_env = Agent(
name="weather_agent_proxy_env",
model=LiteLlm(model="gpt-4o"), # this will call the `gpt-4o` model on LiteLLM proxy
description="Provides weather information using a model from LiteLLM proxy.",
instruction="You are a helpful weather assistant. "
"Use the 'get_weather' tool for city weather requests. "
"Present information clearly.",
tools=[get_weather],
)
# Set up session and runner
session_service_proxy_env = InMemorySessionService()
session_proxy_env = session_service_proxy_env.create_session(
app_name="weather_app",
user_id="user_1",
session_id="session_proxy_env"
)
runner_proxy_env = Runner(
agent=weather_agent_proxy_env,
app_name="weather_app",
session_service=session_service_proxy_env
)
# Test the proxy-enabled agent (environment variables method)
async def test_proxy_env_agent():
print("\n--- Testing Proxy-enabled Agent (Environment Variables) ---")
await call_agent_async(
"What's the weather in London?",
runner=runner_proxy_env,
user_id="user_1",
session_id="session_proxy_env"
)
# Execute the conversation
await test_proxy_env_agent()