💸 Ausgabenverfolgung
Verfolgen Sie Ausgaben für Schlüssel, Benutzer und Teams über 100+ LLMs.
LiteLLM verfolgt automatisch die Ausgaben für alle bekannten Modelle. Sehen Sie sich unsere Modellkostenkarte an
Ausgaben mit LiteLLM verfolgen
Schritt 1
👉 LiteLLM mit einer Datenbank einrichten
Schritt 2 Senden Sie eine /chat/completions-Anfrage
- OpenAI Python v1.0.0+
- Curl-Anfrage
- Langchain
import openai
client = openai.OpenAI(
api_key="sk-1234",
base_url="http://0.0.0.0:4000"
)
response = client.chat.completions.create(
model="llama3",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
user="palantir", # OPTIONAL: pass user to track spend by user
extra_body={
"metadata": {
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] # ENTERPRISE: pass tags to track spend by tags
}
}
)
print(response)
metadata als Teil des Anfragekörpers übergeben
curl --location 'http://0.0.0.0:4000/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer sk-1234' \
--data '{
"model": "llama3",
"messages": [
{
"role": "user",
"content": "what llm are you"
}
],
"user": "palantir", # OPTIONAL: pass user to track spend by user
"metadata": {
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] # ENTERPRISE: pass tags to track spend by tags
}
}'
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
import os
os.environ["OPENAI_API_KEY"] = "sk-1234"
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:4000",
model = "llama3",
user="palantir",
extra_body={
"metadata": {
"tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"] # ENTERPRISE: pass tags to track spend by tags
}
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
Schritt 3 - Ausgabenverfolgung überprüfen Das war's. Überprüfen Sie nun, ob Ihre Ausgaben verfolgt wurden
- Response Headers
- DB + UI
Erwarten Sie, dass x-litellm-response-cost in den Antwortheadern mit den berechneten Kosten angezeigt wird
Die folgenden Ausgaben werden in der Tabelle LiteLLM_SpendLogs verfolgt
{
"api_key": "fe6b0cab4ff5a5a8df823196cc8a450*****", # Hash of API Key used
"user": "default_user", # Internal User (LiteLLM_UserTable) that owns `api_key=sk-1234`.
"team_id": "e8d1460f-846c-45d7-9b43-55f3cc52ac32", # Team (LiteLLM_TeamTable) that owns `api_key=sk-1234`
"request_tags": ["jobID:214590dsff09fds", "taskName:run_page_classification"],# Tags sent in request
"end_user": "palantir", # Customer - the `user` sent in the request
"model_group": "llama3", # "model" passed to LiteLLM
"api_base": "https://api.groq.com/openai/v1/", # "api_base" of model used by LiteLLM
"spend": 0.000002, # Spend in $
"total_tokens": 100,
"completion_tokens": 80,
"prompt_tokens": 20,
}
Navigieren Sie zum Tab "Nutzung" in der LiteLLM-Benutzeroberfläche (zu finden unter https://your-proxy-endpoint/ui) und überprüfen Sie, ob die Ausgaben unter Nutzung verfolgt werden
Nicht-Proxy-Admins Zugriff auf /spend-Endpunkte gewähren
Verwenden Sie dies, wenn Sie möchten, dass Nicht-Proxy-Admins auf /spend-Endpunkte zugreifen können
Vereinbaren Sie ein Meeting mit uns für Ihre Enterprise-Lizenz
Schlüssel erstellen
Schlüssel mit permissions={"get_spend_routes": true} erstellen
curl --location 'http://0.0.0.0:4000/key/generate' \
--header 'Authorization: Bearer sk-1234' \
--header 'Content-Type: application/json' \
--data '{
"permissions": {"get_spend_routes": true}
}'
Generierten Schlüssel für /spend-Endpunkte verwenden
Auf Spend-Routen mit neu generierten Schlüsseln zugreifen
curl -X GET 'https://:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30' \
-H 'Authorization: Bearer sk-H16BKvrSNConSsBYLGc_7A'
Ausgaben für Teams und API-Schlüssel zurücksetzen - NUR MASTER-SCHLÜSSEL
Verwenden Sie /global/spend/reset, wenn Sie
Die Ausgaben für alle API-Schlüssel und Teams zurücksetzen möchten. Die
spendfür ALLE Teams und Schlüssel inLiteLLM_TeamTableundLiteLLM_VerificationTokenwerden aufspend=0gesetztLiteLLM behält alle Protokolle in
LiteLLMSpendLogszu Audit-Zwecken
Anfrage
Nur der LITELLM_MASTER_KEY, den Sie festgelegt haben, kann auf diese Route zugreifen
curl -X POST \
'https://:4000/global/spend/reset' \
-H 'Authorization: Bearer sk-1234' \
-H 'Content-Type: application/json'
Erwartete Antworten
{"message":"Spend for all API Keys and Teams reset successfully","status":"success"}
Tägliche Ausgabenaufschlüsselungs-API
Rufen Sie detaillierte tägliche Nutzungsdaten für einen Benutzer (nach Modell, Anbieter und API-Schlüssel) mit einem einzigen Endpunkt ab.
Beispielanfrage
curl -L -X GET 'https://:4000/user/daily/activity?start_date=2025-03-20&end_date=2025-03-27' \
-H 'Authorization: Bearer sk-...'
{
"results": [
{
"date": "2025-03-27",
"metrics": {
"spend": 0.0177072,
"prompt_tokens": 111,
"completion_tokens": 1711,
"total_tokens": 1822,
"api_requests": 11
},
"breakdown": {
"models": {
"gpt-4o-mini": {
"spend": 1.095e-05,
"prompt_tokens": 37,
"completion_tokens": 9,
"total_tokens": 46,
"api_requests": 1
},
"providers": { "openai": { ... }, "azure_ai": { ... } },
"api_keys": { "3126b6eaf1...": { ... } }
}
}
],
"metadata": {
"total_spend": 0.7274667,
"total_prompt_tokens": 280990,
"total_completion_tokens": 376674,
"total_api_requests": 14
}
}
API-Referenz
Siehe unsere Swagger API für weitere Details zum /user/daily/activity-Endpunkt
✨ (Enterprise) Ausgabenberichte generieren
Verwenden Sie dies, um andere Teams, Kunden und Benutzer abzurechnen
Verwenden Sie den Endpunkt /global/spend/report, um Ausgabenberichte zu erhalten
- Ausgaben pro Team
- Ausgaben pro Kunde
- Ausgaben für einen bestimmten API-Schlüssel
- Ausgaben für interne Benutzer (Schlüsselbesitzer)
Beispielanfrage
👉 Schlüsseländerung: group_by=team angeben
curl -X GET 'https://:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30&group_by=team' \
-H 'Authorization: Bearer sk-1234'
Beispielantwort
- Erwartete Antwort
- Skript zum Parsen der Antwort (Python)
[
{
"group_by_day": "2024-04-30T00:00:00+00:00",
"teams": [
{
"team_name": "Prod Team",
"total_spend": 0.0015265,
"metadata": [ # see the spend by unique(key + model)
{
"model": "gpt-4",
"spend": 0.00123,
"total_tokens": 28,
"api_key": "88dc28.." # the hashed api key
},
{
"model": "gpt-4",
"spend": 0.00123,
"total_tokens": 28,
"api_key": "a73dc2.." # the hashed api key
},
{
"model": "chatgpt-v-2",
"spend": 0.000214,
"total_tokens": 122,
"api_key": "898c28.." # the hashed api key
},
{
"model": "gpt-3.5-turbo",
"spend": 0.0000825,
"total_tokens": 85,
"api_key": "84dc28.." # the hashed api key
}
]
}
]
}
]
import requests
url = 'https://:4000/global/spend/report'
params = {
'start_date': '2023-04-01',
'end_date': '2024-06-30'
}
headers = {
'Authorization': 'Bearer sk-1234'
}
# Make the GET request
response = requests.get(url, headers=headers, params=params)
spend_report = response.json()
for row in spend_report:
date = row["group_by_day"]
teams = row["teams"]
for team in teams:
team_name = team["team_name"]
total_spend = team["total_spend"]
metadata = team["metadata"]
print(f"Date: {date}")
print(f"Team: {team_name}")
print(f"Total Spend: {total_spend}")
print("Metadata: ", metadata)
print()
Ausgabe des Skripts
# Date: 2024-05-11T00:00:00+00:00
# Team: local_test_team
# Total Spend: 0.003675099999999999
# Metadata: [{'model': 'gpt-3.5-turbo', 'spend': 0.003675099999999999, 'api_key': 'b94d5e0bc3a71a573917fe1335dc0c14728c7016337451af9714924ff3a729db', 'total_tokens': 3105}]
# Date: 2024-05-13T00:00:00+00:00
# Team: Unassigned Team
# Total Spend: 3.4e-05
# Metadata: [{'model': 'gpt-3.5-turbo', 'spend': 3.4e-05, 'api_key': '9569d13c9777dba68096dea49b0b03e0aaf4d2b65d4030eda9e8a2733c3cd6e0', 'total_tokens': 50}]
# Date: 2024-05-13T00:00:00+00:00
# Team: central
# Total Spend: 0.000684
# Metadata: [{'model': 'gpt-3.5-turbo', 'spend': 0.000684, 'api_key': '0323facdf3af551594017b9ef162434a9b9a8ca1bbd9ccbd9d6ce173b1015605', 'total_tokens': 498}]
# Date: 2024-05-13T00:00:00+00:00
# Team: local_test_team
# Total Spend: 0.0005715000000000001
# Metadata: [{'model': 'gpt-3.5-turbo', 'spend': 0.0005715000000000001, 'api_key': 'b94d5e0bc3a71a573917fe1335dc0c14728c7016337451af9714924ff3a729db', 'total_tokens': 423}]
Beispielanfrage
👉 Schlüsseländerung: group_by=customer angeben
curl -X GET 'https://:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30&group_by=customer' \
-H 'Authorization: Bearer sk-1234'
Beispielantwort
[
{
"group_by_day": "2024-04-30T00:00:00+00:00",
"customers": [
{
"customer": "palantir",
"total_spend": 0.0015265,
"metadata": [ # see the spend by unique(key + model)
{
"model": "gpt-4",
"spend": 0.00123,
"total_tokens": 28,
"api_key": "88dc28.." # the hashed api key
},
{
"model": "gpt-4",
"spend": 0.00123,
"total_tokens": 28,
"api_key": "a73dc2.." # the hashed api key
},
{
"model": "chatgpt-v-2",
"spend": 0.000214,
"total_tokens": 122,
"api_key": "898c28.." # the hashed api key
},
{
"model": "gpt-3.5-turbo",
"spend": 0.0000825,
"total_tokens": 85,
"api_key": "84dc28.." # the hashed api key
}
]
}
]
}
]
👉 Schlüsseländerung: api_key=sk-1234 angeben
curl -X GET 'https://:4000/global/spend/report?start_date=2024-04-01&end_date=2024-06-30&api_key=sk-1234' \
-H 'Authorization: Bearer sk-1234'
Beispielantwort
[
{
"api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
"total_cost": 0.3201286305151999,
"total_input_tokens": 36.0,
"total_output_tokens": 1593.0,
"model_details": [
{
"model": "dall-e-3",
"total_cost": 0.31999939051519993,
"total_input_tokens": 0,
"total_output_tokens": 0
},
{
"model": "llama3-8b-8192",
"total_cost": 0.00012924,
"total_input_tokens": 36,
"total_output_tokens": 1593
}
]
}
]
Interner Benutzer (Schlüsselbesitzer): Dies ist der Wert von user_id, der bei Aufruf von /key/generate übergeben wird
👉 Schlüsseländerung: internal_user_id=ishaan angeben
curl -X GET 'https://:4000/global/spend/report?start_date=2024-04-01&end_date=2024-12-30&internal_user_id=ishaan' \
-H 'Authorization: Bearer sk-1234'
Beispielantwort
[
{
"api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
"total_cost": 0.00013132,
"total_input_tokens": 105.0,
"total_output_tokens": 872.0,
"model_details": [
{
"model": "gpt-3.5-turbo-instruct",
"total_cost": 5.85e-05,
"total_input_tokens": 15,
"total_output_tokens": 18
},
{
"model": "llama3-8b-8192",
"total_cost": 7.282000000000001e-05,
"total_input_tokens": 90,
"total_output_tokens": 854
}
]
},
{
"api_key": "151e85e46ab8c9c7fad090793e3fe87940213f6ae665b543ca633b0b85ba6dc6",
"total_cost": 5.2699999999999993e-05,
"total_input_tokens": 26.0,
"total_output_tokens": 27.0,
"model_details": [
{
"model": "gpt-3.5-turbo",
"total_cost": 5.2499999999999995e-05,
"total_input_tokens": 24,
"total_output_tokens": 27
},
{
"model": "text-embedding-ada-002",
"total_cost": 2e-07,
"total_input_tokens": 2,
"total_output_tokens": 0
}
]
},
{
"api_key": "60cb83a2dcbf13531bd27a25f83546ecdb25a1a6deebe62d007999dc00e1e32a",
"total_cost": 9.42e-06,
"total_input_tokens": 30.0,
"total_output_tokens": 99.0,
"model_details": [
{
"model": "llama3-8b-8192",
"total_cost": 9.42e-06,
"total_input_tokens": 30,
"total_output_tokens": 99
}
]
}
]
✨ Benutzerdefinierte Metadaten für Ausgabenprotokolle
Protokollieren Sie spezifische Schlüssel/Wert-Paare als Teil der Metadaten für ein Ausgabenprotokoll
Das Protokollieren spezifischer Schlüssel/Wert-Paare in den Metadaten von Ausgabenprotokollen ist eine Enterprise-Funktion. Siehe hier
✨ Benutzerdefinierte Tags
Die Verfolgung von Ausgaben mit benutzerdefinierten Tags ist eine Enterprise-Funktion. Siehe hier